Compute the internal energy of a non-ideal gas – van der waals

Given: \displaystyle (p + \alpha\frac{n^2}{V^2})(V-nb) = nRT
Find: internal energy U

SOLUTION:
The internal energy of a van der waals gas is given by

\displaystyle U_{real} = U_{ideal} + \int_{V_o}^{V_1} T^2 (\frac{\partial}{\partial T}\frac{p}{T})dV

To solve the integral, we first find p using algebra

\displaystyle (p + \alpha\frac{n^2}{V^2})(V-nb) = nRT

\displaystyle pV - pnb + \frac{\alpha n^2}{V} - \frac{\alpha n^3b}{V} = nRT

\displaystyle p(V-nb) = nRT - \frac{\alpha n^2}{V} + \frac{\alpha n^3b}{V}

Divide both sides by T(V-nb)

\displaystyle \frac{p}{T} = \frac{nR}{V-nb} - \frac{\alpha n^2}{TV(V-nb)} + \frac{\alpha n^3b}{TV(V-nb)}

Differentiate wrt T

\displaystyle \frac{\partial}{\partial T}\frac{p}{T} =  \frac{\alpha n^2}{T^2V(V-nb)} - \frac{\alpha n^3b}{T^2V(V-nb)}

The integral becomes

\displaystyle  = \int_{V_o}^{V_1} T^2 (\frac{\alpha n^2}{T^2V(V-nb)} - \frac{\alpha n^3b}{T^2V(V-nb)}) dV

\displaystyle = \int_{V_o}^{V_1}  (\frac{\alpha n^2}{V(V-nb)} - \frac{\alpha n^3b}{V(V-nb)}) dV

\displaystyle = (\alpha n^2 - \alpha n^3b) \int_{V_o}^{V_1} \frac{dV}{V(V-nb)}

\displaystyle = (\alpha n^2 - \alpha n^3b) \int_{V_o}^{V_1} \frac{dV}{V^2} - \int_{V_o}^{V_1} \frac{dV}{Vnb}

\displaystyle = (\alpha n^2 - \alpha n^3b) (\frac{1}{V_o} - \frac{1}{V_1} - \frac{1}{nb} ln\frac{V_1}{V_o})

Thus,

\displaystyle U_{real} = \frac{3}{2}nR + (\alpha n^2 - \alpha n^3b) (\frac{1}{V_o} - \frac{1}{V_1} - \frac{1}{nb} ln\frac{V_1}{V_o})

Comment for corrections and further questions. Thanks!

Leave a comment